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ABSTRACT: This article presents the modeling and characterization of a new class of
piezoelectric linear motor. The motor relies in its operation on a set of piezoelectric bimorphs
which are sequentially activated to linearly move a drive rod along spring loaded rollers.
Emphasis in this article is placed on studying the dynamic behavior of this class
of piezoelectric motors, both theoretically and experimentally, in an effort to predict the
piezomotor response to various loads and excitation schemes. To this end, a numerical
model has been developed to simulate the dynamics of the piezoelectric bimorphs comprising
the piezomotor. Friction between the bimorph elements and the drive rod are handled using an
appropriate friction model. Experimental testing of the motor is carried out to validate the
predictions of the theoretical model.

Key Words: piezoelectric motor, piezoelectric bimorphs, linear motion, dynamic modeling,
finite element model, experimental validation.

NOMENCLATURE

[C] Damping matrix
d33 Piezoelectric strain constant
E Young’s modulus
E3 Electric field
f Friction force
F Axial force
h Bimorph height
I Second moment of area of one bimorph layer

[K] Stiffness matrix
L Bimorph length
Lo External load on drive rod
M Bending moment

[M] Mass matrix
N Normal force by drive rod on bimorph

S E
33 Compliance at constant electric field
S3 Strain
T3 Stress

{u(t)} Load vector
v Drive rod velocity
vs Slip velocity
V Bimorph tip velocity
w Bimorph out-of-plane width
x Axial displacement
y Transverse displacement

{�} Vector of structural degrees of freedom
e Axial strain
� Coefficient of friction

INTRODUCTION

T
HE quest for designing miniature mobility platforms
has been a significant driving force for the develop-

ment of reliable actuators and sensors to fit these
modern applications. Among the promising designs are
those relying on smart structures for their operation.
One appealing embodiment of the vast literature on
smart systems is the use of piezoelectric bimorphs since
they offer various benefits over other designs such as the
piezoelectric ultrasonic wave motors. For example, the
bimorph motors provides high output power for a given
torque and requires lower applied electric field (Tieck et
al., 2007). Furthermore, the bimorph motors are gener-
ally very stiff and stable enabling very accurate load
positioning with accuracies which are in the neighbor-
hood of 10 nm (http://www.piezomotor.se/). However,
these performance metrics occur at the expense of
higher motor weight, low travel speeds, and low overall
efficiency (Tieck et al., 2007).

The modeling of piezoelectric bimorphs has received
considerable attention in the last two decades. An early
model has been presented by Smits et al. (1991) where
the effective shear forces and bending moments acting
on a bimorph were obtained using force balance to
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predict the tip displacement under different static
mechanical and electrical loads. Youn and Becker
(1991) developed a finite element model to study the
dynamics of piezoelectric bimorphs, accounting for the
variation of electric field across the thickness of a piezo-
electric beam. More recently, Wang (2004) presented a
finite element formulation for the static and dynamic
analysis of piezoelectric bimorph beams and plates.
The use of such bimorphs in the form of legs for walking
robots has been presented, for example, by Tani (1996).
Another interesting design is attained by using the
bimorphs in friction-driven high-precision actuators
(Chang and Youcef-Toumi, 1998). The idea was further
developed, improved, and applied by Bexell and
Johansson (1999) to form a miniature rotary piezo-
motor and by Johansson et al. (2002) and Simu and
Johansson (2006) who developed a friction-driven
linear motor. Recent improvements of the idea are sum-
marized in the U.S patent by Johansson et al. (2008)
It is important here to note that development of the

piezoelectric bimorph motor has been limited to fabri-
cation and evaluation (Simu and Johansson, 2002;
Friend et al., 2004), quasi-static analysis of the motor
dynamics (Simu and Johansson, 2006), or system iden-
tification and control (Merry et al., 2009).
In this study, however, the emphasis is placed on com-

prehensive theoretical and experimental investigation
of the dynamic characteristics of this class of motors.
In particular, a detailed coupled-field finite element
model is developed to study the dynamics of piezoelec-
tric bimorphs. Friction between the bimorph elements
and the drive rod is also studied in an attempt to char-
acterize the load�speed relationship of the linear motor.
Comparisons are established between the theoretical
predictions and the experimental results in order to val-
idate the developed finite element model.
Such an effort is aimed to parallel the efforts exerted

by Vinhais et al. (2004) to analyze the horn type piezo-
motor developed by Hill (2002) which has lower load
capacity, lower output power, and higher applied

electric field than the piezoelectric bimorph motor
(Tieck et al., 2007).

This remainder of this article is organized into three
sections. The dynamic model is introduced in section
‘materials and methods’. The main results are presented
in Section ‘results and discussion’, followed by discus-
sions and conclusions.

DYNAMIC MODEL

Figure 1 shows a photograph and a schematic draw-
ing of the piezoelectric motor under consideration. The
motor consists of four piezoceramic bimorphs that are
sequentially actuated to move a drive rod in a linear
fashion. The piezomotor relies on friction forces
between the drive rod and the piezoelectric bimorphs
(legs) and contact is maintained by a set of two spring-
loaded rollers, as shown in Figure 1.

By applying properly controlled and phase-shifted
electric fields, the bimorphs can bend, elongate, and/or
shrink. The combined motion of the bimorphs in pairs
makes the bimorphs lift and push or lower and rest the
drive rod. This two-by-two bimorph motion makes the
motor run forwards or backwards, taking steps typically
no bigger than 3�5 micrometers and reaching speeds of
�5�10mm/s (http://www.piezomotor.se/).

Each bimorph in the present design consists of alter-
nating active piezoelectric elements and electrodes, in
the manner depicted in Figure 2, forming two multi-
layer piezoceramic stacks. Each stack has a length L,
height h, and out-of-plane width w, and can be activated
independently. It is assumed that the upper and lower
stacks are made of the same piezoelectric material and
have identical geometries. Bonding of all layers is
assumed to be perfectly cohesive. Shear deformation
and rotary inertia effects are included in the present
model. A constant electric field across each individual
piezoelectric layer is assumed since the variation
across the small spacing between the electrodes form-
ing the bimorph can be negligible, especially for low

(a) Photograph
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(b) Schematic drawing

Figure 1. Photograph of a linear piezoelectric motor (Johansson et al., 2004; PiezoLEGS, 2009).
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drive frequencies. The external loads imposed on the
bimorphs during operation are those due to (a) applied
electric field, (b) axial loading by the drive rod, and (c)
transverse friction forces. The response of the bimorph
to each of these effects is to be studied herein in order to
predict the dynamic behavior of the piezomotor.
The pertinent piezoelectric constitutive equations for

a d33 piezoceramic are given by,

T3f g ¼ ½c�fS3g � ½e�
T
fE3g

fDg ¼ ½e�fS3g þ ½"�fE3g
ð1Þ

where T3f g,fS3gdenote the longitudinal stress and strain,
[c] is the compliance, {E3} is the effective electric field,
{D} is the electric displacement, [e] is the piezo-electric
coupling constant, and [e] is the permittivity.
A finite element coupled-field formulation is devel-

oped to model the dynamics of the piezoelectric
bimorph. For the mechanical domain, the bimorph is
modeled as an equivalent single layer using 1D
Timoshenko beam elements having 3 degrees of freedom
per node denoting the axial, transverse, and angular
displacements. The displacements at any point within
the element are interpolated by:

u ¼ �1 þ �2x,

v ¼ �1 þ �2xþ �3x
2 þ �4x

3

� ¼ �1 þ �2xþ �3x
2

ð2Þ

In this way, the structural displacements can be
expressed in terms of the nodal degrees of freedom
through the shape functions given by:

u ¼ fNu1gf�
e
ug

v ¼ fNu2gf�
e
ug

� ¼ fNu3gf�
e
ug

ð3Þ

where f�eug is the vector of nodal structural degrees of
freedom. As the upper and lower stacks are activated
independently, two additional electrical degrees of free-
dom are added at each node to designate the electric
displacement of the upper and lower stacks. The electric
displacements are assumed to be linearly interpolated
along the element length through:

DU ¼ ’1 þ ’2x

DL ¼ ’3 þ ’4x
ð4Þ

where the superscripts U and L designate the upper and
lower piezoelectric stacks, respectively. In this way, the
electric displacement shape functions are given by:

DU ¼ fNd1gf�
e
dg

DL ¼ fNd2gf�
e
dg

ð5Þ

where f�edg denotes vector of nodal electrical degrees of
freedom. Accordingly, the bimorph element developed
herein possesses 5 degrees of freedom per node.

The mechanical strain energy due to axial, bending
and shear effects in the bimorphs given by (Petyt, 1990):

Umech ¼
1

2

Z L

0

EA
@u

@x

� �2

þEI
@�

@x

� �2
" #

dx

þ
1

2

ZL
0

�AG
@v

@x
� �

� �2
" #

dx ð6Þ

Imposing the shape functions defined in Equation (3)
gives:

Umech ¼
1

2
�eu
� �T

½Ke
uu� �

e
u

� �
ð7Þ

where:

Ke
uu

� �
¼
1

2

Z L

0

½EAfNu1,xg
TfNu1,xgþEIfNu3,xg

TfNu3,xg

þ �AGfNu2,x �Nu3,xg
TfNu2,x �Nu3,xg�dx ð8Þ

where the subscript x indicates partial differentiation
with respect to x, whereas a superscript e denotes ele-
mental quantities. The kinetic energy of the bimorph is
expressed as (Petyt, 1990):

T ¼
1

2

Z L

0

	A _u2 þ _v2
� 	

dxþ
1

2

Z L

0

	I _�2dx ð9Þ

which can also be expressed as:

T ¼
1

2
_�eu
� �T

½Me
uu�

_�eu
� �

ð10Þ
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Figure 2. Bimorph consisting of two piezoelectric stacks.
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where

½Me
uu� ¼

1

2

Z L

0

	A fNu1g
TfNu1g þ fNu2g

TfNu2g
� �

þ 	I fNu3g
TfNu3g

� �
dx ð11Þ

The electrical potential energy is given by:

Uelec ¼
1

2

Z
fDgTfE3gdV

¼
1

2½"�

Z
fDgTfDg � fDgT½e�fS3g
� �

dV ð12Þ

Imposing the shape functions as defined in Equation
(5) and expressing the strain energies of the upper and
lower piezoelectric layers gives:

Ue
elec ¼

1

2
f�edg

T½Kdd�f�
e
dg � f�

e
dg

T½Kud�f�
e
ug ð13Þ

where:

½Ke
dd� ¼

Z L

0

bh

2½"�
fNd1g

TfNd1g þ fNd2g
TfNd2g

� 	
 �
dx ð14Þ

and

½Ke
ud� ¼

1

2

Z L

0
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2½"�
fNd1g
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TfNu1,xg

� 	
 �
dx

�
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Z L

0

b½e�h

8½"�
fNd1g
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dx

ð15Þ

The non-conservative piezoelectric forces are given
by:

Qd ¼

Z L

0

VUfNd1gbdxþ

Z L

0

VLfNd2gbdx ð16Þ

The element equations of motion are then obtained by
using Lagrange’s equation. Upon assembly, the equa-
tions of motion for the coupled electro-mechanical
system are given by:

½Muu� 0
0 0


 �
€�u
€�d

� 
þ
½Kuu� �½Kud�

T

�½Kud� ½Kdd�


 �
�u
�d

� 
¼

Qu

Qd

� 
ð17Þ

By using the second set of equations of (17), the equa-
tions of motion can be reduced to:

½Muu�f €�ug þ ½Kuu� � ½Kud�
T
½Kdd�

�1
½Kud�

� �
f�ug

¼ fQug þ ½Kud�
T
½Kdd�

�1
fQdg ð18Þ

which can be solved for the structural domain.

The electrical degrees of freedom can be recovered
through:

f�dg ¼ ½Kdd�
�1
fQdg þ ½Kdd�

�1
½Kud�f�ug ð19Þ

In this way, the bimorph response can be obtained for
any prescribed structural and/or electrical loads. This
model will be used to study the dynamics of a linear
piezomotor, as described in the following section.

NUMERICAL AND EXPERIMENTAL RESULTS

The results obtained by the numerical simulation and
experimental validation of the piezomotor behavior
under various loading conditions are presented in this
Section. The dimensions and effective material proper-
ties of the piezoelectric elements are listed in Table 1.

While the overall dimensions of the piezoelectric
bimorphs can be measured, only the active elements con-
tribute to the motion mechanism, as pointed out by
Simu and Johansson (2006). In the present design, insu-
lating layers are provided at the sidewalls of the
bimorphs to avoid short-circuiting, and also between
the electrodes of each piezoelectric layer.

Free Bimorph

To begin with, the drive rod was removed and the
piezoelectric bimorphs were allowed to vibrate freely
under the action of the imposed voltage excitation.
The transverse tip displacement was monitored using a
scanning laser Doppler vibrometer. The fundamental
natural frequency of each bimorph was calculated to
be around 77 kHz. Figure 3 shows the experimentally
measured input voltage to the piezoelectric bimorphs
during forward backward movements of the drive rod.
Inspection of the plots reveals that the supply voltage
varies in an almost trapezoidal manner with an ampli-
tude of 24V and frequency of 925Hz, which is well
beneath resonance allowing room for further increase
in operating frequency. Every bimorph is driven by a
pair of excitations that are phase shifted by 90�. Of the
four bimorphs forming the piezomotor, two are driven
in-phase with one another, whereas the other two are
driven out-of-phase. The slight deviation from the

Table 1. Bimorph dimensions and piezoelectric
properties.

Length, L 3.5 mm
Width, w 3 mm
Thickness, h 1.35 mm
Piezoelectric strain constant, d33 4.76�10�8 m/V
Elastic modulus, E 63 GPa
Density, q 7600 kg/m3

Permittivity at constant stress, e 5� 10�5 F/m
Shear modulus, G 20 GPa
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perfect trapezoidal waveforms is due to the circuitry
used to generate these signals.
To simulate the above behavior analytically, only one

bimorph is considered and subjected to the trapezoidal
voltage signal shown in Figure 4. A small artificial pro-
portional damping term, in the form [C] ¼ 2� 10�5 [K],
has been added in the theoretical model to account for
the damping provided by the packing and insulating
layers.
The equations of motion are integrated numerically

using the Newmark scheme to yield the time response
which is used to plot the trajectory of the bimorph tip
shown in Figure 5. The trace of the bimorph tip motion
resembles a rhombus, in agreement with (PiezoLEGS)
and indicates a maximum transverse displacement of
�1.24 mm. Accordingly, the velocity of an unloaded
piezomotor is �4.59mm/s. Figure 6 shows a comparison
of the tip velocity, as measured experimentally, with that
obtained theoretically which are in fair agreement. The
slight variations observed experimentally can be attrib-
uted to errors in supplying truly trapezoidal voltage
waveforms.

Loaded Bimorph

The external mechanical loads imposed by the drive
rod on the bimorphs during operation consist of both
axial loading and transverse friction forces, as suggested
by the free-body diagram in Figure 7. Contact between
the drive rod and bimorphs is maintained by a preload
provided by a spring pushing on a pair of rollers, as

indicated. It is assumed that the rollers exert only a
normal force N on the drive rod. At the instant
shown, two bimorphs are driving the rod to the right
through an available friction force N/2, being the coef-
ficient of friction. A load, Lo, is also applied externally
on the drive rod, as shown.

The axial and shear forces, in N, on each bimorph are
assumed to vary periodically in the manner depicted in
Figure 8. The abrupt changes in axial and shear forces
may be reduced in practice by the drive sequence to
ensure smoother load transfer and sharing among the
bimorphs.
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Figure 3. Experimentally measured input voltage to the piezoelectric bimorphs during forward backward movements of the drive rod.
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The resulting tip trajectory for an axial load of 25 N
and shear load 2.5 N is shown in Figure 9.

The piezomotor is then tested experimentally under
various external loads by hanging known dead weights
attached to the drive rod via a string and measuring the
displacement of the drive rod with a laser sensor as
shown in Figure 10.

The experimental velocity�load relationship is shown
in Figure 11 for both upward and downward motions of
the piezomotor. These variations can fairly be approxi-
mated by straight line, as indicated.

Based on experimental observations, the velocity of
the drive rod was found to decrease with increasing
load when lifting the load. The opposite occurred
during load lowering. As in friction-driven motors,
when the drive rod was stalled, the piezoelectric
bimorphs still moved in sliding friction with the drive
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Figure 5. Trajectory of the bimorph tip.
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rod, but providing insufficient friction force to move the
block load. At zero load, a state of ‘stick’ exists, during
which the velocity of the bimorph tips is completely
transferred to the drive rod. As the applied external
load increases, slipping commences and the drive rod
velocity drops. Accordingly, the drive rod velocity, v,
can be expressed as:

v ¼ V� vs ð20Þ

where V is the velocity of the bimorph tip, and the rela-
tion accounts for the loss in drive rod velocity due to

slippage. It was also observed that constant steady-state
velocities were achieved for various loads. At constant
velocity, the driving friction force is given by:

f ¼ �N ¼ L0 ð21Þ

ACoulomb friction model offers a constant coefficient
of friction (hence a constant traction force), regardless
of the slip velocity, and hence cannot be used in the
present model to capture the experimental observations.
As a remedy to this problem, other models have
been proposed in the literature (Olsson et al., 1998).
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Figure 9. Tip trajectory for an axial load of 25 N and shear load of 2.5 N.
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Based on the current experiments, we can approximate
the velocity�load characteristics during lifting as:

v ¼ 5:072� 0:64L0 ð22Þ

and for lowering as:

v ¼ 5:223� 0:49L0 ð23Þ

where v is in mm/s and L0 is in Newtons. Comparing
Equation (20) with (22) and (23) reveals that according
to PiezoLEGS, the normal (axial) force exerted on the
bimorphs is around 50 N. Hence, the coefficient of

friction relates to the slip velocity through
� ¼ 0:0625vs during lifting � ¼ 0:081vs during lowering.

CONCLUSIONS

This paper has presented a modeling of the dynamics
of a linear piezomotor of the walking type. The devel-
oped model is used to predict the piezomotor response
to various loads and excitation schemes. It is important
here to note that developed model of the piezo-motor
presents a comprehensive modeling of this class of
motors based on detailed coupled-field finite element
model. This is unlike the available models which are
based on either quasi-static analysis of the motor
dynamics (Simu and Johansson, 2006), or simple
second order models which are obtained through
system identification for control purposed (Merry
et al., 2009).

Furthermore, the developed model simulates the
interaction between the dynamics of the piezoelectric
bimorphs and the drive rod. An appropriate friction
model is used to account for the friction between the
bimorph and the drive rod, which is critical to the effec-
tive operation of the motor. Experimental testing of the
motor is carried out to validate the predictions of the
theoretical model.

It is important to note that the piezoelectric bimorph
motors have been considered for this study because of
their high output power, lower applied electric field,
high stiffness, and accurate load positioning capabilities.
However, these performance metrics occur at the
expense of higher motor weight, low travel speeds, and
low overall efficiency.
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This effort aims ultimately at demonstrating the fea-
sibility of employing this class of piezoelectric actuators
in driving various smart systems.
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