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Optimization of the topology of a plate coupled with an acoustic cavity is presented in an
attempt to minimize the fluid–structure interactions at different structural frequencies. A
mathematical model is developed to simulate such fluid–structure interactions based on
the theory of finite elements. The model is integrated with a topology optimization
approach which utilizes the moving asymptotes method. The obtained results demonstrate
the effectiveness of the proposed approach in simultaneously attenuating the structural
vibration and the sound pressure inside the acoustic domain at several structural frequen-
cies by proper redistribution of the plate material.

Experimental verification is carried out by manufacturing topology optimized plates and
monitoring their vibration and sound radiation into a rigid acoustic cavity. The measured
sound pressure and plate vibration are found to be in good agreement with the predictions
of the mathematical model.

The presented theoretical and experimental techniques present valuable tools in the
design of a wide variety of critical structures which must operate quietly when subjected
to fluid loading.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, extensive application of topology optimization to continuum structures has been reported, as it has been
recognized that using such an approach yields to improved static and dynamic characteristics. For these reasons, topology
optimization has found its ways in aeronautical, civil and mechanical engineering applications, and started to become a stan-
dard module of commercial finite element packages.

The literature on structural topology optimization is quite extensive and the research activities in this field have focused on a
wide variety of applications. The optimization problem was treated as a material distribution problem to minimize/maximize
certain objective functions. In other words, the structural material is redistributed to achieve the optimization goal bounded by
various constraints, among which is the volume fraction of the material. The efficiency of this method was clearly demonstrated
by solving the classical problem of minimizing the compliance of various structures (Bendsoe and Kikuchi, 1988; Bendsoe,
1989) and maximizing their fundamental buckling load (Bendsoe and Sigmund, 2003). Later on, structural dynamics started
to become the focus of researchers working in topology optimization. Maximization of the structural dynamics properties such
as the eigenfrequencies and maximizing the gap between two consecutive eigenfrequencies was tackled by Bendsoe and Diaz
(1994), Krog and Olhoff (1999), Pederson (2000), Olhoff and Du (2005) and Jensen and Pedersen (2006). Minimizing the dynam-
ical response of a structure for a given driving frequency or frequency range was studied by Jog (2002).

However, fewer studies have considered the application of topology optimization to fluid–structure interaction problems.
For example, Yoon et al. (2007) used a mixed finite element model to represent a fluid–structure coupled domain, where the
. All rights reserved.
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Nomenclature

List of symbols
A fluid–structure boundary area
Ae surface area for structure finite element
c sonic speed in the acoustic medium
fst externally applied mechanical force on the structure
he plate finite element thickness
hmax;min maximum and minimum permissible plate thickness
J performance index
K.E. kinetic energy
[KA], [Ks] stiffness matrix of the acoustic cavity and structure
[MA], [Ms] mass matrix of the acoustic cavity and structure
Ne number of elements in the plate structure
Nw;N/ shape functions for the plate transverse displacement and the velocity potential
P.E. potential energy
p, {p} acoustic pressure and nodal pressure vector in the acoustic domain
uA particle displacement in the acoustic medium
V volume of fluid
vf volume fraction
w transverse displacement of the plate
WP work done on the acoustic cavity by the plate elements
{d} degrees of freedom for the structure element
hx; hy rotation of the node about the x and y axes
qA;q density of the acoustic medium and structure
/ velocity potential in the acoustic domain
[XP] fluid–structure coupling matrix
x angular velocity
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structure was placed inside an acoustic medium. Using this approach, the authors were able to formulate the problem with-
out explicit boundary interface representation. The objective of the optimization scheme was to minimize the sound pres-
sure inside the acoustic medium, when exciting the structure by fixed excitation frequency. Du and Olhoff (2007) have
attempted to minimize the sound power radiated from a structure surface placed inside an acoustic cavity. However, be-
cause air was the acoustic medium, a feedback coupling between the acoustic medium and the structure was neglected.
In addition, weak coupling was assumed and the acoustic pressure was ignored in the structural equations. Also, in their
study the excitation frequency was maintained fixed at certain value regardless of the effect that the material redistribution
has on the stiffness of the structure domain, and on the modal frequencies.

Hence, topology optimization of fluid–structure interaction problems, where true coupling is considered and the exter-
nal excitation being locked to the modal frequencies has yet to considered. It is therefore the objective of the current pa-
per to model a fluid–structure interaction problem, where a vibrating flexible plate is coupled to a closed acoustic cavity. A
topology optimization approach using the method of moving asymptotes (MMA) (Svanberg, 1999; Bruyneel et al., 2002)
will be developed to minimize the coupling between the flexible plate and the acoustic domain. Doing so, the energy
transfer between the two domains will be minimized. All of this is considered at modal frequencies, since it is clear, that
during the optimization phase the material distribution varies from iteration to the next, affecting consequently the nat-
ural frequencies of the fluid-loaded structure. In this case, the true attenuation of the structural vibration and the associ-
ated sound radiation can be attributed only to the effect of the topology optimization and not to the shift of the natural
frequencies.

This paper is organized in six sections. In Section 1, a brief introduction has been presented. The mathematical model
describing the fluid–structure interaction between the plate and the acoustic cavity is presented in Section 2. The formula-
tion of the topology optimization problem is developed in Section 3. The theoretical and experimental performance charac-
teristics of the topology optimized plate/cavity system are presented in Sections 4 and 5 respectively. A brief summary of the
conclusions is given in Section 6.

2. Modeling of plate–cavity interaction

2.1. Overview

Consider the plate–cavity system shown schematically in Fig. 1. In this system, a rectangular flexible plate is coupled with
an acoustic cavity that has five rigid walls. The plate is subjected to external excitation and a finite element model will be
developed to predict the interaction between the plate vibration and the associated sound radiation into the acoustic cavity.
Please cite this article in press as: Akl, W. et al, Topology optimization of a plate coupled with acoustic cavity, Int. J. Solids
Struct. (2008), doi:10.1016/j.ijsolstr.2008.05.034



Fig. 1. Coupled plate–cavity system.
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The finite element model consists of two different types of elements. The first one is 4-node quad elements with 3 degrees
of freedom per node ðw; hx; hyÞ representing the transverse displacement of the node and rotations about the x-axis and the
y-axis, respectively. The second type of elements is a cubic 8-node element for the acoustic domain with the acoustic
pressure (p) as the sole degree of freedom per node. The element shapes are as presented in Figs. 2 and 3.

2.2. Individual models of the plate and cavity

2.2.1. The cavity
Considering a fluid volume ‘‘V”, then the following identities can be defined:
Plea
Stru
Potential energy ðP:E:Þ ¼ 1
2
qAc2

Z
V
ðdivuAÞ2dV ; ð1Þ

Kinetic energy ðK:E:Þ ¼ 1
2
qA

Z
V

_u2
AdV : ð2Þ
The work done on the acoustic cavity by the plate element is given by
ðWPÞ ¼
Z

BoundaryArea
pwdA: ð3Þ
For the sake of simplifying the calculations, the velocity potential u (a scalar quantity) is used instead of the acoustic
pressure p using the following identities:
Fig. 2. Plate 4-node quad element.

Fig. 3. Acoustic 8-node brick element.
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Stru
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þ @u
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� _u2
A ¼ ð�ruÞ2 ¼ @u
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@y

� �2

þ @u
@z

� �2
" #

; ð6Þ

�divuA ¼ �
1
c2

@u
@t

: ð7Þ

Hence; P:E: ¼ 1
2

qA

c2

Z
V

_u2dV ; ð8Þ

K:E: ¼ 1
2
qA

Z
V
ðruÞ2dV ; ð9Þ

and WP ¼ �qA

Z
BoundaryArea

u�wdA: ð10Þ
Hamilton’s principle, as given by Eq. (11), is used to extract the differential equation of motion of the acoustic fluid, as influ-
enced by the coupling with the plate:
Z t2

t1

dðK:E:� P:E:þWPÞdt ¼ 0: ð11Þ
Let u ¼ N/u where Nu denotes an appropriate shape function and u represents the nodal velocity potential vector of the
element. Similarly, let w ¼ Nwfdg where Nw is an appropriate shape function and {d} denotes the nodal deflection vector of
the plate. Then

The variation of the potential energy (d P.E.)
Z t2

t1

dðP:E:Þdt ¼ qA

c2

Z t2

t1

Z
V
fd _ugT½ðNuÞTðNuÞ�f _ugdVdt: ð12Þ
Integrating Eq. (12) by parts to eliminate fd _ug yields
Z t2

t1

dðP:E:Þdt ¼ �qA

c2

Z t2

t1

Z
V
fdugT½ðNuÞTðNuÞ�f€ugdVdt: ð13Þ
Similarly, the variation of the kinetic energy (d K.E.):
Z t2

t1

dðK:E:Þdt ¼ qA

Z t2

t1

Z
V
fdugT½ðrNuÞTðrNuÞ�fugdVdt; ð14Þ
and the variation of the work done by the plate (d WP) can be determined as follows:
As WP ¼ �qA

Z
A
f _ugTðNuÞTðNwÞfdgdA; ð15Þ

then
Z t2

t1

dðWPÞdt ¼ �qA

Z t2

t1

Z
A
fd _ugT½ðNuÞTðNwÞ�fdgdAdt; ð16Þ

or
Z t2

t1

dðWPÞdt ¼ �qA

Z t2

t1

Z
A
fdugT½ðNuÞTðNwÞ�f _dgdAdt: ð17Þ
Finally, summing up the terms of fdug inside the time integral and equating them to zero results in the required equation
of motion of the acoustic element:
qA

c2

Z
V
ðNuÞTðNuÞdVf€ug þ qA

Z
V
ðrNuÞTðrNuÞdVfug ¼ qA

Z
A
ðNuÞTðNwÞdAf _dg: ð18Þ
Differentiating with respect to time and utilizing the following identities:
_u ¼ � p
qA
; €u ¼ � _p

qA
; and u

v
¼ � €p

qA

gives 1
c2

R
V ðNuÞTðNuÞdVf€pg þ

R
V ðrNuÞTðrNuÞdVfpg ¼ �qA

R
AðNuÞTðNwÞdAf€dg

; ð19Þ
where {p} is the nodal pressure vector, which could also be written as
½MA�f€pg þ ½KA�fpg ¼ �½X�Tf€dg; ð20Þ
se cite this article in press as: Akl, W. et al, Topology optimization of a plate coupled with acoustic cavity, Int. J. Solids
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where

� {d} = the degrees of freedom of the structure element,
� ½MA� ¼ 1

c2

R
V ðNuÞTðNuÞdV= the mass matrix of the acoustic medium,

� ½KA� ¼
R

V ðrNuÞTðrNuÞdV = the stiffness matrix of the acoustic medium,
� ½X�T ¼ qA

R
A ½ðNuÞTðNwÞ�dA = the fluid–structure coupling matrix.

2.2.2. The plate
The plate finite element model is based on the first order shear deformation theory, which is efficiently used for relatively

thick as well as thin plates. In this model, it is assumed that planes normal to the mid-surface of the plate in the un-deformed
state remain plane but not necessarily normal to the mid-surface in the deformed state. Hence the rotation degrees of free-
dom ðhx; hyÞ are considered as independent degrees of freedom and not derivatives of the mid-surface out of plane
displacements.

Then, the equation of motion of the plate is given as
Plea
Stru
½Ms�f€dg þ ½Ks�fdg ¼ FS; ð21Þ
where FS represent the forces exerted by the acoustic fluid on the plate elements.
The forcing function ‘‘FS” can be calculated from the work done by the acoustic field on the structure as follows:
WP ¼
Z

BoundaryArea
wpdA ð22Þ

WP ¼
Z

A
fdgTðNwÞTðNuÞfpgdA ð23Þ

Hence;
Z t2

t1

dðWPÞdt ¼
Z t2

t1

Z
A
½fddgTðNwÞTðNuÞfpgdA�dt: ð24Þ
Since the work = force � displacement, then the forcing term on the plate can be calculated as
FS ¼
½X�p
qA

with ½X� ¼ qA

Z
A
ðNwÞTðNuÞdA:
Thus, the complete differential equation of the plate is given as
½Ms�f€dg þ ½Ks�fdg ¼
½X�fpg

qA
: ð25Þ
2.3. Coupling the acoustic cavity with the plate structure

The equation of motion of the coupled system is given in the following matrix form
Ms 0
½X�T MA

� � €d

€p

( )
þ

Ks �½X�=qA

0 KA

� �
d

p

� �
¼

fs

0

� �
; ð26Þ
where, ‘‘fs ” is the externally applied force.
From (26) for harmonic excitation at angular frequency x
ðKs �Msx
2Þd� ½X�

qA
p ¼ fs ð27Þ

or; p ¼ ðKA �MAx2Þ�1x2½X�Td: ð28Þ
Substituting for p from (28) into (27) results in
ðKs �Msx
2Þ � ½X�

qA
ðKA �MAx2Þ�1x2½X�T

� �
d ¼ fs: ð29Þ
It is important here to note that a boundary layer is inserted at the interface between the plate and the cavity as shown in
Fig. 4. This boundary layer accommodates the changes between the plate nodal DOF ðw; hx; hyÞ and the cavity nodal DOF (p).
In this layer, the out of plane displacement of the plate causes the adjacent fluid to move with the same velocity in a direc-
tion normal to the plate surface, thus resulting in a pressure variation inside that layer which is then transmitted to neigh-
boring fluid elements. In return, the plate is loaded with the fluid mass adjacent to resulting in variation of the stiffness and
mass of the fluid loaded plate. Therefore the coupling matrix ‘‘X”, described in Eqs. (20) and (25), is developed to account for
this mutual interaction.
se cite this article in press as: Akl, W. et al, Topology optimization of a plate coupled with acoustic cavity, Int. J. Solids
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Fig. 4. Interaction between the plate and the acoustic cavity.
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3. Formulation of the optimization of the fluid–structure interaction problem

3.1. Problem formulation

The topology optimization problem can be formulated as follows:
Plea
Stru
minqJ ¼ ðdTCT
wpÞ defined at the boundary area

such that
Mst 0
½X�T MA

� � €d

€p

( )
þ

Kst �½X�=qA

0 KA

� �
d

p

� �
¼

fs

0

� �
;

PNe
e¼1heAe

6 vf � hmax �
PNe

e¼1
Ae

0 < hmin < he
< hmax

* +
:

Note that Cwd ¼ w where Cw is a matrix that extracts the transverse deflection w from the nodal deflection vector d. Also, the
objective function can be explained literally as to minimize the coupling between the structure and the fluid domains. By
doing this, minimum work or energy is transmitted between the structure and the fluid domains, resulting in minimization
of the sound intensity and sound pressure levels, due to structure resonances inside the acoustic cavity. It is worth mention-
ing, that due to the formulated objective function, the cavity modes will not be affected as a result of the topology optimi-
zation of the flexible plate.

3.2. Sensitivity analysis

The sensitivity of the objective function ‘‘J” which defines the fluid–structure coupling, with respect to the optimization
variable (plate element density ‘‘q”) is given as follows:
dJ
dq
¼ dTCT

w
dp
dq
þ pTCw

dd

dq
: ð30Þ
To calculate dd
dq we differentiate Eq. (29) w.r.t. q. This yields
d ðKs �Msx
2Þ � ½X�qA

ðKA �MAx2Þ�1x2½X�T
n o

d
h i

dq
¼ dfs

dq
¼ 0:
Define Ks D ¼ ðKs �Msx
2Þ, Kfl D ¼ ðKA �MAx2Þ, A ¼ ½X�

qA
ðKA �MAx2Þ�1x2½X�T
dKs D

dq
dþ ½Ks D � A� dd

dq
¼ 0; B ¼ ½Ks D � A�;C ¼ dKs D

dq
: ð31Þ
Hence, dd
dq ¼ �B�1Cd.

To calculate dp
dq we differentiate Eq. (28) with respect to q gives
x2½X�T dd

dq
¼ ðKA �MAx2Þ dp

dq
:

Define D ¼ x2½X�T, then dp
dq ¼ K�1

fl DD dd
dq.

From Eq. (30)
se cite this article in press as: Akl, W. et al, Topology optimization of a plate coupled with acoustic cavity, Int. J. Solids
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Plea
Stru
dJ
dq
¼ dTCT

wK�1
fl DD

Td

Tq
þ pTCw

dd

dq
: ð32Þ
Substituting Td
Tq from Eq. (31) into (32), results in
TJ
Tq
¼ �ðdTCT

wK�1
fl DDB�1Cdþ pTCwB�1CdÞ:
During the topology optimization calculation, the effect of the density is substituted for by the effect of the thickness of the
plate elements.

4. Numerical results

4.1. Model parameters

A finite element model for a closed acoustic cavity coupled with a flexible aluminum plate was developed. The charac-
teristics of the coupled fluid–structure domains are as given in Table 1 and as shown in Fig. 1.

In the following analysis, the excitation force is locked to the structural modal frequency under consideration so that the
optimization algorithm will redistribute the material of the aluminum plate in such a way to minimize the coupling at that
specific modal frequency. The excitation force applied on the aluminum plate is selected to be symmetric, and the first two
odd modes are studied.

The initial plate thickness under consideration is 1/16 in. It is the objective of this study to use 50% of the material of the
plate and minimize the fluid–structure coupling. Therefore, the initial guess starts with a plate with uniform thickness of 1/
32 in. and while the optimization algorithm evolves, the thickness should vary between 1/16 in. and 1/64 in., which repre-
sents the minimum permissible plate thickness.

The aluminum plate is excited mechanically with external forces at frequencies locked at the modal frequencies of the
coupled plate–cavity system. In specific, the first and fifth modes were considered since they represent the first two odd
modes, which are known of their high acoustic coupling. At each optimization iteration, the structural modal frequencies
are expected to change due to the effect of the material redistribution of the aluminum plate. Therefore, at each iteration,
the structural modal frequencies of the first two odd modes for the coupled system are calculated and the excitation fre-
quency is locked on.

4.2. Excitation frequency and topology optimization targeting the first odd mode

The shape of material distribution and relative plate displacement field progresses as shown in Fig. 5. While the actual
objective function was to minimize the fluid–structure acoustic coupling, it was more realistic to monitor the effect of
the optimization process on the sound intensity measured inside the acoustic cavity at the frequency of the first odd struc-
tural mode. Fig. 6 illustrates the solution convergence for the first mode optimization and its effect on the attenuation of the
sound intensity.

The frequency response for the plate displacement and the sound pressure were also monitored. The plate displacement
was monitored at the midpoint of the plate and the sound pressure was also calculated at a point 3” away from the
midpoint of the plate inside the acoustic cavity. The frequency responses for the plain and optimized cases are as shown
in Figs. 7 and 8.

4.3. Excitation frequency and topology optimization targeting the second odd mode

The shape of material distribution and relative plate displacement field progresses as shown in Fig. 9.
Again, the convergence for the sound intensity for the second odd structural mode is illustrated in Fig. 10.
The frequency response for the plate displacement and the sound pressure were again monitored at the same locations as

in the first case and are plotted in Figs. 11 and 12.
structure–fluid coupled domains parameters

imensions 1200 � 1200 � 3000

main Air at 25 �C and 1 atm
plate dimensions 1200 � 1200

plate thickness ðhmaxÞ 1/1600

plate material Aluminum
fraction, vf 0.5

0.25 � hmax

se cite this article in press as: Akl, W. et al, Topology optimization of a plate coupled with acoustic cavity, Int. J. Solids
ct. (2008), doi:10.1016/j.ijsolstr.2008.05.034



Fig. 6. Convergence of the sound intensity for first structural odd mode optimization.

Fig. 5. Material distribution for first mode optimization.
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It can be seen from the aforementioned figures that by exciting the aluminum plate at the first structural mode frequency,
the plate displacement is considerably reduced as well as the sound pressure inside the acoustic cavity. The sound pressure
attenuation at the first mode has measured above 3.5 dB. Considerable attenuation was also monitored at other structural
modes. When targeting the second structural odd mode on the other hand, the sound pressure attenuation measured at that
mode has recorded a value above 12 dB, although the optimization didn’t significantly affect the attenuation at other struc-
tural modes.
Please cite this article in press as: Akl, W. et al, Topology optimization of a plate coupled with acoustic cavity, Int. J. Solids
Struct. (2008), doi:10.1016/j.ijsolstr.2008.05.034



Fig. 8. Sound pressure of plain plate and topology optimized plate targeting first odd mode.

Fig. 7. Displacements of plain plate and topology optimized plate targeting first odd mode.
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5. Experimental verification

To verify the obtained results experimentally, a set of three different Aluminum plate configurations were prepared. The
first plate has surface dimensions of 12 in. � 12 in. and uniform thickness of 1/32 in. The second and third plates were man-
ufactured from 1/64 in. Aluminum sheets to approximate the topology optimization results when targeting the first and sec-
ond structural odd modes respectively, while maintaining the volume equal to the first plain case as shown in Figs. 13 and
14.

In Figs. 13 and 14, the plain uncovered metal has a thickness of 1/64 in., the while-covered parts have a thickness of 1/
32 in., the red-covered parts have a thickness of 3/64 in. and finally the black-covered plate parts have a thickness of 1/16 in.
Note that the plain plate weighs 254 g, topology optimized plate targeting the first mode is 252 g, and topology optimized
plate targeting the fifth mode 256 g.

A 1200 � 1200 � 3000 closed acoustic cavity was prepared. The cavity has only one surface coupled to the flexible aluminum
plate as shown in Fig. 15. Each of the three different plates was mounted and the plate acceleration as well as the sound
pressure level inside the cavity was measured. The plate was mechanically excited with a speaker that is mounted in a posi-
tion to cause the excitation to be symmetric.

The speaker was excited with a function generator that sweeps a frequency range between 40 Hz and 1 kHz with a res-
olution of 0.5 Hz. The acceleration was measured at the midpoint of the plate and the sound pressure was measured at a
point corresponding to the midpoint of the plate, only 3 in. away.

Frequency response for the plate acceleration as well as the sound pressure inside the acoustic cavity are shown in Figs.
16 and 17 for the first case, where the optimization is tailored to the first structural odd mode.

The displayed results emphasize the effectiveness of the topology optimization in attenuating both the structural vibra-
tion of the plate and the sound pressure level inside the acoustic cavity. Furthermore, the obtained results agree closely with
the theoretical predictions displayed in Figs. 7 and 8.

Figs. 18 and 19 show the corresponding results when the topology optimization is tailored to the second odd mode.
The obtained results demonstrate also the effectiveness of the topology optimization in attenuating both the structural

vibration of the plate and the sound pressure level inside the acoustic cavity. Furthermore, the obtained results agree closely
with the theoretical predictions displayed in Figs. 11 and 12.
Please cite this article in press as: Akl, W. et al, Topology optimization of a plate coupled with acoustic cavity, Int. J. Solids
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Fig. 9. Material distribution for second structural odd mode optimization.

Fig. 10. Convergence of sound intensity for second structural odd mode Optimization.

10 W. Akl et al. / International Journal of Solids and Structures xxx (2008) xxx–xxx

ARTICLE IN PRESS
In addition to frequency response measurement for the plate vibration acceleration and sound pressure inside the acous-
tic cavity, the plate displacement field was measured using a laser vibrometer. The setup is shown in Fig. 20.

The three plate sets were excited at the first structural odd mode using a function generator and the excitation speaker.
The laser vibrometer is used to measure the displacement field of the different plates, while locked at the same excitation
frequency as shown in Figs. 21 and 22.

6. Conclusions

A topology optimization approach was developed for fluid–structure interaction between a flexible plate coupled with a
rigid acoustic cavity. The objective of the optimization was to redistribute the material of the flexible plate in order to min-
Please cite this article in press as: Akl, W. et al, Topology optimization of a plate coupled with acoustic cavity, Int. J. Solids
Struct. (2008), doi:10.1016/j.ijsolstr.2008.05.034



Fig. 11. Displacements of plain plate and topology optimized plate targeting second odd mode.

Fig. 12. Sound pressure of plain plate and topology optimized plate targeting second odd mode.

Fig. 13. Manufactured plate approximating the optimization results when targeting the first odd mode.
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imize the fluid–structure coupling. A finite element model was developed to simulate the fluid–structure interactions and
was integrated with the topology optimization approach. The model was used to develop the sensitivity analysis necessary
for the operation of the topology optimization algorithm. The excitation acting on the plate was locked at the first or second
structural odd modes to ensure the effectiveness of the optimization in reducing the sound pressure at the modal frequen-
cies. The analytical model showed considerable attenuation for the first structural odd mode as well as consecutive modes,
when the optimization was targeting that mode specifically. On the other hand excellent attenuation was obtained for the
second structural odd mode, when targeting the optimization scheme towards that specific mode.
Please cite this article in press as: Akl, W. et al, Topology optimization of a plate coupled with acoustic cavity, Int. J. Solids
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Fig. 14. Manufactured plate approximating the optimization results when targeting the second odd mode.

Fig. 15. Experimental setup.

Fig. 16. Experimental sound pressure of plain plate and topology optimized plate targeting first odd mode.
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Fig. 17. Experimental accelerations of plain plate and topology optimized plate targeting first odd mode.

Fig. 18. Experimental sound pressure of plain plate and topology optimized plate targeting second odd mode.

Fig. 19. Experimental accelerations of plain plate and topology optimized plate targeting second odd mode.
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Experimental verification was carried out by manufacturing a set of topology optimized plates that approximate the re-
sults obtained from the analytical model. The plates were coupled to an acoustic cavity. Plate vibration acceleration and
sound pressure inside the acoustic cavity were measured and compared with the plain-plate case. Considerable attenuation
in both the plate vibration acceleration and sound pressure inside the acoustic cavity were recorded. A good match with the
analytical model was observed. The displacement fields of the plate were also measured using a laser vibrometer, and good
agreement was observed with the analytical case.

The presented topology optimization approach can be an invaluable tool in the design of a wide variety of critical struc-
tures which must operate quietly when subjected to fluid loading. Note that the utility of such a design tool is enhanced
through the use of the first order shear deformation theory which makes the analysis equally applicable to thin and thick
Please cite this article in press as: Akl, W. et al, Topology optimization of a plate coupled with acoustic cavity, Int. J. Solids
Struct. (2008), doi:10.1016/j.ijsolstr.2008.05.034



Fig. 21. Displacement field for the plain plate excited at the first structural odd mode.

Fig. 20. Laser vibrometer experimental setup.

Fig. 22. Displacement field for the plate optimized for the first structural odd mode.
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plate structures. Therefore, a natural extension of the present work is to theoretically predict and experimentally validate the
performance of topology optimized thick plates coupled with acoustic cavities.
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