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Abstract

Periodic structures exhibit unique dynamic characteristics that make them act as tunable mechanical filters for wave propagation. As a
result, waves can propagate along the periodic structures only within specific frequency bands called the ‘pass bands’ and wave propagation is
completely blocked within other frequency bands called the ‘stop bands’ or ‘band gaps’. The spectral width of these bands can be optimized
using topology optimization. In this paper, topology optimization is used to maximize the fundamental natural frequency of Mindlin plates
while enforcing periodicity. A finite element model for Mindlin plates is presented and used along with an optimization algorithm that accounts
for the periodicity constraint in order to determine the optimal topologies of plates with various periodic configurations. The obtained results
demonstrate the effectiveness of the proposed design optimization approach in generating periodic plates with optimal natural frequency and
wide stop bands. The presented approach can be invaluable design tool for many structures in order to control the wave propagation in an
attempt to stop/confine the propagation of undesirable disturbances.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Topology optimization has been extensively applied to a wide
variety of structures in order to optimize their static and dy-
namic characteristics. For instance, topology optimization was
employed to minimize the compliance of plates subject to in-
plane single load [1] and multiple loads [2]. Also, topology op-
timization has been used to maximize the eigen-frequencies of
the lateral vibration of plates [3,4] and the buckling stiffness of
cylindrical shells with inner-wall stiffeners [5]. Other attempts
include optimization of the structural topologies for power flow
distribution [6] and energy absorption characteristics of multi-
material structures [7].

Recently, the emphasis is placed on maximizing the stop
bands (or band gaps) of various types of periodic structures.
For example, Sigmund and Jensen [8] optimized the topology
of sonic band gap structures subject to periodic loading and
Diáz et al. [9] optimized the band gap properties of grillage
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structures. Also, Halkjaer et al. [10,11] maximized the band
gap characteristics of infinite periodic structures with single or
bi-material cells of assumed initial periodic topology.

In this paper, no initial periodic topology is assumed and the
optimization is carried out over the entire structure rather than
on an individual cell. In this manner, actual boundary condi-
tions can be imposed, the topology of finite structures can be di-
rectly optimized, and the obtained performance predictions can
be realistic. Accordingly, the topology optimization approach
adopted here considers the design space to be only the unit cell
of the periodic plate and replicates the topology of the unit cell
over the entire structure by enforcing a periodicity constraint.
Then, the topology, i.e. thickness distribution over the unit cell
is selected to maximize the fundamental frequency of the entire
plate. In this way, the topology optimization process is carried
out very fast as it is limited to selecting the thickness distribu-
tion of a LOCAL unit cell while the design objective describes
the GLOBAL performance of a periodic assembly of the local
unit cell.

This paper is organized in four sections and one appendix. In
Section 1, a brief introduction is presented. In Section 2, a finite
element model is presented to describe the vibration of Mindlin
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Nomenclature

Ae element surface area
B matrix of differential operators in

strain–displacement relationship
D constitutive matrix
E elasticity modulus
F force vector
f natural frequency (Hz)
h vector of the thickness of elements
he, hmin, hmax element current, minimum and maxi-

mum thicknesses
k wave vector
Ke, Kc, K element, cell, and global stiffness ma-

trices
Me, Mc, M element, cell, and global mass matrices
Nel, Ncel, Nm number of elements, cells, and modes
N matrix of interpolation functions

T e element kinetic energy
u displacement vector
Ue element potential energy
u, v, w displacement components
V e element volume
vf volume fraction
x, y, z physical coordinates
� lower bound on natural frequencies
� vector of degrees of freedom
�x , �y angular rotations
� strain vector
� stress vector
�, � material density and density matrix
� Poisson’s ratio
� natural frequency (rad/s)

plates. Section 3 presents several numerical examples and
Section 4 summarizes the conclusions of this study. Derivation
of the basic finite element matrices is given in the appendix.

2. Mathematical model

In this section, a finite element model is presented to de-
scribe the vibration of Mindlin plates based on the approach
outlined by Reddy [12]. The model is then integrated with an
optimization algorithm that enforces periodicity in order to de-
termine the optimal topologies of plates with various periodic
configurations.

2.1. Finite element modeling

Consider any point at a distance z from the neutral plane
of the plate shown in Fig. 1 undergoing lateral motion. The
displacement has three components {u, v, w} in the x, y, and z
directions, respectively. The first two components are given by

u = z�x, v = z�y , (1)

where �x and �y are, respectively, the angular rotations of the
mid-plane about the x- and y-axes. The plate is divided into
four-node finite elements of thickness he, where the superscript
e designates the element number. Each node has three degrees
of freedom, w, �x , and �y making a total of 12 degrees of
freedom per element. Within this element, the displacement
vector ue = {w, �x, �y}T is approximated by

ue = N · �e, (2)

where N is a 3 × 12 matrix including the bilinear Lagrange
interpolation functions while �e is a 12 × 1 vector with all 12

degrees of freedom of this element. The strain–displacement
relationship for a plate element under bending is given by

� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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= B · ue, (3)

where B is a matrix of differential operators

B =

⎡
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. (4)

The approximation in Eq. (2) together with Eq. (3) is used to
express the strain in terms of the element degrees of freedom
�e as follows:

� = B · N · �e. (5)

Therefore, the variation in the potential energy in the element
�Ue due to a virtual change in the strain �� is

�Ue =
∫

V

��T · � dV , (6)
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Fig. 1. Schematic of a plate element.

where V denotes the volume. Eq. (6) can be expressed in terms
of strain only using the constitutive relation for small elastic
strains � = D · �

�Ue =
∫

V

��T · D · � dV , (7)

where D is the constitutive matrix. Therefore, the variation in
the element potential energy �Ue due to a virtual displacement
��e is

�Ue = ��eT · Ke · �e, (8)

where Ke the element stiffness matrix is defined as

Ke =
∫

Ae

∫ h/2

−h/2
NT · BT · D · B · N dz dAe, (9)

where Ae denotes the area. From the expression of the strain
vector in Eq. (3), it can be easily noticed that Ke will incorporate
terms in he and he3

as outlined in the appendix, such that

Ke = heKe
1 + he3

Ke
3, (10)

where the matrices Ke
1 and Ke

3 are given in the appendix.
In a similar fashion, the variation in the element kinetic en-

ergy �T e due to a virtual displacement �ue can be determined
from:

�T e =
∫

V

�u̇T · � · u̇ dV , (11)

where � is defined as

� = �

[1 0 0
0 z2 0
0 0 z2

]
, (12)

where � is the density of the plate material. In Eq. (11), u can
be substituted by the approximation given in Eq. (2) to yield

�T e = ��̇
eT · Me · �̇

e
, (13)

where Me is the element mass matrix defined as

Me =
∫

Ae

∫ h/2

−h/2
NT · � · N dz dAe. (14)

Again, it is clear that Me will incorporate terms in he and he3

as indicated in the appendix such that

Me = heMe
1 + he3

Me
3, (15)

where Me
1 and Me

3 are described in the appendix.
For a harmonic motion with angular frequency �,

�̇ = i��, (16)

where i = √−1. Therefore, the expression for �T e becomes

�T e = −�2��eT · Me · �e. (17)

Applying the principal of virtual work yields

Nel∑
i=1

(�Ue + �T e) = 0, (18)

where Nel is the total number of elements. Using the element
energies in Eqs. (8) and (17) the resulting equation of motion is

(K − �2M)� = 0, (19)

where � is the global vector of degrees of freedom of all ele-
ments, while K and M are the global stiffness and mass ma-
trices calculated using the expressions of the element stiffness
and mass matrices in Eqs. (9) and (14) as follows:

K =
Nel∑
e=1

Ke, M =
Nel∑
e=1

Me. (20)

Eq. (19) represents the governing equation of a plate un-
dergoing free lateral oscillations at a frequency � = 2�f .
The essential boundary conditions are imposed by setting the
constrained degrees of freedom in the vector � to prescribed
values. The natural frequencies fn and the corresponding mode
shapes are determined by solving the eigenvalue problem
of Eq. (19).

2.2. Topology optimization

The finite element model developed in the previous section is
integrated with an optimization algorithm in order to generate
the optimal topologies of plates with various periodic configura-
tions. The objective is to maximize the fundamental frequency
f1 of the plate while maintaining periodicity of the plate. Peri-
odicity is applied by dividing the plate into Nc identical cells.
The unit cell is repeated Nx times along the x-axis and Ny times
along the y-axis such that Nc =Nx Ny . Each of these cells has
Nelc elements with thicknesses hi = {h1 h2 . . . hNelc} where
i = 1, . . . , Nc. Note that Nelc = NcxNcy where Ncx and Ncy
denote the number of elements along the x- and y-axes in each
cell as shown in Fig. 2.

Accordingly, the topology optimization approach adopted
here considers the design space to be only the unit cell of the
periodic plate and replicates the topology of the unit cell over
the entire structure by enforcing a periodicity constraint. Then,
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Fig. 2. Schematic of a plate element.

the topology, i.e. thickness distribution over the unit cell is se-
lected to maximize the fundamental frequency of the entire
plate. In this way, the topology optimization process is carried
out very fast as it is limited to selecting the thickness distribu-
tion of a LOCAL unit cell while the design objective describes
the GLOBAL performance of a periodic assembly of the local
unit cell.

The bound formulation described in BendsZe and Sigmund
[13] is used to optimize the plate topology while enforcing
periodicity as follows:

max
h

,

such that
i > , i = Nm,

h1 = h2 = · · · = hNc ,
(K 2

i M) i = 0, i = Nm,
Nelc

e= 1
heA e vf × hmax

Nelc

e= 1
A e,

0 < h min he hmax, e = 1, 2, · · · , N elc

,

(21)

where � is a lower bound of the natural frequencies, Nm is
the number of the considered lowest natural frequencies, hmin
and hmax are the minimum and maximum bounds on the plate
thickness, respectively. The optimization formulation shown in
Eq. (21) simply maximizes the lower bound on the natural fre-
quencies of the whole plate by controlling only the thicknesses
of one cell while the objective function accounts for the con-
tributions of all cells. Note that the periodicity is imposed by
constraining the thicknesses of each cell to be equal as de-
fined by the equality constraint that appears in the fourth line
of Eq. (21).

An important part of the optimization process is the sensitiv-
ity analysis in which the effect of the design variables h on the
optimization function � is considered. The governing equation
(19) is made scalar by premultiplying it by �T

i and differenti-
ating it with respect to each component of h to give

�T
i ·
(

�K
�he

− ��2
i

�he
M − �2

i

�M
�he

)
· �i = 0 (22)

from which the sensitivities can be extracted as

��2
i

�he
= �T

i ·
(

�K
�he

− �2
i

�M
�he

)
· �i , (23)

where the mode shapes �i have been normalized with respect
to the mass matrix M. The effect of periodicity is manifested
in the derivatives of the global mass and stiffness matrices with
respect to h as

�K
�he

=
Nc∑
j=1

Ke(j)
1 + 3he2

Ke(j)
3 and

�M
�he

=
Nc∑
j=1

Me(j)
1 + 3he2

Me(j)
3 , (24)

where Eqs. (10) and (15) have been used and e(j) denotes the
eth element of the j th cell.

In many applications, it is desirable to have the optimized
topology in a 0–1 state by penalizing intermediate values. A
very popular technique is the ‘solid isotropic material with pe-
nalization’ (SIMP) discussed in BendsZe and Sigmund [13]. Al-
though mandatory in some cases, penalization has some draw-
backs as it leads to less optimal solutions, and may also yield
entirely different topologies depending on the selection of the
penalty factor. In this paper, no penalization is applied and the
optimization algorithm is free to choose any intermediate val-
ues of he.

2.3. Frequency bands

In this section, the theory behind the computation of the
frequency bands is presented in order to investigate the stop
bands created by the plate periodic patterns. Fig. 3 shows a
square cell extending along the domain of the wave vector
k = {k1 k2} = [−� �]2.

The cell is governed by the following equation of motion:

(Kc − �2Mc)�c = 0, (25)

where Kc, Mc, and �c are the stiffness matrix, mass matrix,
and the degrees of freedom vector of all nodes in the cell.
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Fig. 3. Boundaries of Brillouin Zone.

The degrees of freedom can be divided into five groups; �i ,
�1, �2, �3, and �4 which belong to the interior, left, bottom,
right, and top nodes, respectively. Therefore, Eq. (25) can be
written as⎡
⎢⎢⎢⎣

Kii Ki1 Ki2 Ki3 Ki4
K1i K11 K12 K13 K14
K2i K21 K22 K23 K24
K3i K31 K32 K33 K34
K4i K41 K42 K43 K44

⎤
⎥⎥⎥⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�i

�1
�2
�3
�4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0
F1
F2
F3
F4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (26)

where Kjk are the appropriate sub-matrices of the dynamic
stiffness matrix.

Periodicity implies that �3=eik1�1, �4=eik2�2, F3=−eik1 F1,
and F4 = −eik2 F2. Hence, Eq. (26) becomes⎡
⎢⎢⎢⎣

Kii Ki1 + eik1 Ki3 Ki2 + eik2 Ki4
K1i K11 + eik1 K13 K12 + eik2 K14
K2i K21 + eik1 K23 K22 + eik2 K24
K3i K31 + eik1 K33 K32 + eik2 K34
K4i K41 + eik1 K43 K42 + eik2 K44

⎤
⎥⎥⎥⎦
{

�i

�1
�2

}

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0
F1
F2

−eik1 F1
−eik2 F2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (27)

Multiplying the fourth and fifth rows of Eq. (27) by e−ik1

and e−ik2 , and adding them to the second and third rows, re-
spectively nullifies the force vector and results in the following
eigenvalue problem [8]:

(Kc(k) − �2(k)Mc)�c = 0, (28)

in which the mass matrix is independent of the wave vector. One
can easily show that Kc(k) has complex components but still
symmetric and yields real �(k). Plotting of the frequency bands
as a function of k can be significantly simplified by searching
along the boundaries of the irreducible Brillouin zone defined
by the polygon ABC shown in Fig. 3.

3. Numerical examples

The model developed in the previous section is applied to
some test cases. The adopted optimization procedure is sum-
marized in Fig. 4. The procedure relies on using the Method

Input a plate with uniform
thickness satisfying the volume

fraction constraint

Build the finite element model
& solve for natural frequencies

Perform sensitivity analysis &
use MMA to find a better

material distribution

Check convergence &
maximum iterations.
Terminate if done.

Fig. 4. Block diagram for the optimization procedure.

of Moving Asymptotes (MMA) proposed by Svanberg [14]
to select the cell optimal thickness distribution. It is worth
mentioning that the computation time is mainly determined
by building/solving the finite element model and using the
MMA. These two steps are represented by the second and
third blocks in Fig. 4. The former mainly depends on the to-
tal number of elements Nel, while the latter mainly depends
on the number of design variables Nelc. Applying periodic-
ity limits Nelc, significantly decreases the processing time
per iteration as well as the number of iterations needed for
convergence.

3.1. Plates with simply supported-free–simply supported-free
boundaries

In this section, rectangular plates with sides 300 and 150 mm
are considered. The plates are made of aluminum with hmin =
0.5 mm and hmax = 5 mm and are divided into 32 × 16 square
elements. The boundary conditions are chosen such that the
plate is simply supported on the long edges and free on the
short ones. The maximum number of iterations is set to 200.
Four cases are considered; non-periodic in which the plate is
optimized without enforcing any periodicity, 2 × 1 periodic in
which the plate is divided into two square cells, 4 × 2 periodic
in which the plate is divided into eight square cells, and 8 × 4
periodic in which the plate is divided into 30 two rectangular
cells. In all the four cases, modal analysis is carried out for the
final topology and the lowest 50 modes are extracted which are
used with a standard modal reduction technique to predict the
displacement amplitude at the midpoint of the right edge as a
result of a harmonic force of unit amplitude at the midpoint of
the left edge.

Fig. 5 shows some of the intermediate and final iterations of
the non-periodic case. It is clear that the optimum non-periodic
topology is symmetric rather than periodic.
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Fig. 5. Densities of a non-periodic plate at iteration numbers 25, 50, . . . , 200,
vf = 0.5, hmin = 0.5 mm, hmax = 5 mm.
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Fig. 6. Development of the fundamental frequency f1 of a non-periodic plate
vf = 0.5, hmin = 0.5 mm, hmax = 5 mm.

Fig. 6 shows the evolution of the fundamental frequency
along the optimization process where f1 has evolved to 170%
of the plain case in 200 iterations.

Fig. 7 shows the frequency response at the midpoint of the left
edge in a logarithmic scale of the optimal topology as compared
to the frequency response of a plain plate. It is obvious that the
symmetry has created some narrow stop bands below 500 Hz
and around 1800 Hz.

Fig. 8 shows some of the intermediate and final iterations of
the 2 × 1 periodic case.

Fig. 9 shows the evolution of the fundamental frequency
along the optimization process where f1 has evolved to 171%

0 1000 2000 3000 4000 5000
-6

-4

-2

0

2

Frequency (Hz)

u 
(d

B)

Plain
Optimized Non-Periodic

Fig. 7. Frequency response of a non-periodic plate at the center of the right
edge excited with a harmonic force at the center of the left edge vf = 0.5,
hmin = 0.5 mm, hmax = 5 mm.

Fig. 8. Densities of a 2×1 periodic plate at iteration numbers 25, 50, . . . , 200,
vf = 0.5, hmin = 0.5 mm, hmax = 5 mm.

of the plain case in 200 iterations. This is little bit higher than
the non-periodic case. This is attributed to dealing with half the
number of the design variables, which makes the optimization
converge faster than the other case.

Fig. 10 shows the frequency response at the midpoint of
the left edge in a logarithmic scale of the optimal topology as
compared to the frequency response of a plain plate. One can
easily notice that the optimal 2 × 1 periodic plate is as good as
the non-periodic plate in terms of the fundamental frequency
but we do not gain much in terms of the stop bands.
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Fig. 9. Development of the fundamental frequency f1 of a 2 × 1 periodic
plate, vf = 0.5, hmin = 0.5 mm, hmax = 5 mm.
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Fig. 10. Frequency response of a 2×1 periodic plate at the center of the right
edge excited with a harmonic force at the center of the left edge, vf = 0.5,
hmin = 0.5 mm, hmax = 5 mm.

Fig. 11 shows some of the intermediate and final iterations
of a 4 × 2 periodic plate.

Fig. 12 shows the evolution of the fundamental frequency
along the optimization process where f1 has evolved to 163%
of the plain case. That is to say similar to the non-periodic
optimization. It is clear that convergence is much faster than
previous cases. It is worth mentioning that in this case Nm is
chosen as 3 since using less modes resulted in jumps during
the evolution of f1.

Fig. 13 shows the frequency response at the midpoint of
the left edge in a logarithmic scale of the optimal topology
as compared to the frequency response of a plain plate. Much
wider stop bands are attained in this configuration.

Figs. 14–16 show the corresponding characteristics for an
8 × 4 periodic plate.

Fig. 11. Densities of a 4×2 periodic plate at iteration numbers 25, 50, . . . , 200,
vf = 0.5, hmin = 0.5 mm, hmax = 5 mm.
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Fig. 12. Development of the fundamental frequency f1 of a 4 × 2 periodic
plate, vf = 0.5, hmin = 0.5 mm, hmax = 5 mm.

The frequency bands of the 2 × 1 as compared to the 4 × 2
and 8×4 periodic plates according to the discussion in Section
2.3 are plotted in Fig. 17. The figure displays the effect of the
propagation direction, as outlined in Fig. 3, on the stop band
characteristics of the plates. Note that this plot is in effect a plot
of the dispersion characteristics of these plates [8]. The figure
shows that indeed periodicity develops several stop bands over
the spectrum. The periodicity pattern can be chosen to suppress
vibration in desired frequency ranges and propagation direction.

3.2. Plates with fixed boundaries

In this section, square plates with sides 300 and 300 mm
are considered. The plates are made of aluminum with hmin =
0.5 mm and hmax=5 mm and are divided into 16×16 square el-
ements. The boundary conditions are chosen such that the plate
is fixed along all its edges. The maximum number of iterations



Author's personal copy

446 A. El-Sabbagh et al. / Finite Elements in Analysis and Design 44 (2008) 439–449

0 1000 2000 3000 4000 5000
-6

-4

-2

0

2

Frequency (Hz)

u 
(d

B)

Plain
Optimized Periodic

Fig. 13. Frequency response of a 4 × 2 plate at the center of the right edge
when excited with a harmonic force at the center of the left edge, vf = 0.5,
hmin = 0.5 mm, hmax = 5 mm.

Fig. 14. Densities of an 8 × 4 periodic plate at iteration numbers 25,
50, . . . , 200, vf = 0.5, hmin = 0.5 mm, hmax = 5 mm.

is set to 200. Two cases are considered; non-periodic and 2 × 2
periodic in which the plate is divided into four square cells.
Figs. 18 and 19 show the evolution of the topology and funda-
mental frequencies for the non-periodic case. Fig. 20 shows the
frequency response at the center of one quarter due to a unit
force applied at the center of the diagonally opposite quarter.

Figs. 21 and 22, respectively, show the evolution of topology
and fundamental frequencies for the periodic 2 × 2. Fig. 23
shows the frequency response at the center of one quarter due
to a unit force applied at the center of the diagonally opposite
quarter.
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Fig. 15. Development of the fundamental frequency f1 of an 8 × 4 periodic
plate, vf = 0.5, hmin = 0.5 mm, hmax = 5 mm.
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Fig. 16. Frequency response of an 8 × 4 periodic plate at the center of the
right edge when excited with a harmonic force at the center of the left edge,
vf = 0.5, hmin = 0.5 mm, hmax = 5 mm.

It is clear that although the natural frequency of the periodic
design is smaller than that of the non-periodic, the stop bands
are wider and extend over broad frequency bands as shown in
the frequency band plot of Fig. 24.

4. Conclusions

In this paper, a finite element model is developed and used
to evaluate the natural frequencies and predict the frequency
response for Mindlin plates. The model is also used with a
topology optimization algorithm to maximize the fundamental
frequency while imposing periodicity on repeated cells of the
plate. The proposed approach is applied to a fixed–free alu-
minum plates with a 2 × 1 aspect ratio and square plates with
fixed–fixed boundaries.
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Fig. 17. Frequency bands of a 2 × 1, 4 × 2, and 8 × 4 periodic plates, vf = 0.5, hmin = 0.5 mm, hmax = 5 mm.

Fig. 18. Densities of a non-periodic square plate at iterations numbers 25,
50, . . . , 200, vf = 0.5, hmin = 0.5 mm, hmax = 5 mm.

It is important to note that proposed approach does not as-
sume any initial periodic topology and the optimization is car-
ried out over the entire structure rather than on an individual
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Fig. 19. Development of the fundamental frequency f1 of a non-periodic
square plate, vf = 0.5, hmin = 0.5 mm, hmax = 5 mm.
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Fig. 20. Frequency response of a non-periodic square plate at the center of
one quarter when excited with a harmonic force at the center of the diagonally
opposite quarter, vf = 0.5, hmin = 0.5 mm, hmax = 5 mm.
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Fig. 21. Densities of a 2 × 2 periodic square plate at iterations numbers 25,
50, . . . , 200, vf = 0.5, hmin = 0.5 mm, hmax = 5 mm.
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Fig. 22. Development of the fundamental frequency f1 of a 2 × 2 periodic
square plate, vf = 0.5, hmin = 0.5 mm, hmax = 5 mm.

cell. In this manner, actual boundary conditions can be im-
posed, the topology of finite structures can be directly op-
timized, and the obtained performance predictions can be
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Fig. 23. Frequency response of a 2 × 2 periodic square plate at the center of
one quarter when excited with a harmonic force at the center of the diagonally
opposite quarter, vf = 0.5, hmin = 0.5 mm, hmax = 5 mm.
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Fig. 24. Frequency bands of a 2 × 2 square periodic plates, vf = 0.5,
hmin = 0.5 mm, hmax = 5 mm.

realistic. Accordingly, the topology optimization approach
adopted here considers the design space to be only the unit
cell of the periodic plate and replicates the topology of the
unit cell over the entire structure by enforcing a periodic-
ity constraint. Then, the topology, i.e. thickness distribution
over the unit cell is selected to maximize the fundamental
frequency of the entire plate. In this way, the topology opti-
mization process is carried out in a computationally efficient
manner as it is limited to selecting the thickness distribution
of a LOCAL unit cell while the design objective describes the
GLOBAL performance of a periodic assembly of the local unit
cell.

The presented approach can be an invaluable design tool
for many structures in order to control the wave propagation
in an attempt to stop/confine the propagation of undesirable
disturbances.
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Appendix

For a square element of width a with � = {w1 �x1
�y1

. . .

w4 �x4
�y4

}, let � be the set of Lagrange linear interpolation
functions such that

� = {�1 �2 �3 �4} = {(1 − x)(1 − y) (1 + x)(1 − y)

× (1 + x)(1 + y) (1 − x)(1 + y)}.
Then, the mass matrix Me can be written as Me=heMe

1+he3
Me

3
such that

Me
1 =

⎡
⎣Me

1w,w 0 0
0 Me

1�x,�x
0

0 0 Me
1�y,�y

⎤
⎦ ,

where

Me
1w = �a2

[∫ 1

−1
�i�j dx dy

]
and Me

1�x
= Me

1�y
= 0,

i, j = 1, 2, 3, 4

and

Me
3 =

⎡
⎣Me

3w,w 0 0
0 Me

3�x,�x
0

0 0 Me
3�y,�y

⎤
⎦

with

Me
3w,w = 0 and Me

3�x,�x
= Me

3�y,�y

= 1

12
�a2

[∫ 1

−1
�i�j dx dy

]
.

Also, the stiffness matrix Ke can be written as Ke = heKe
1 +

he3
Ke

3 such that

Ke
1 =

⎡
⎣Ke

1ww Ke
1w,�x

Ke
1w,�y

Ke
1�x,�x

Ke
1�x,�y

sym Ke
1�y,�y

⎤
⎦ ,

where

Ke
1w,w = 5E

12(1 + �)
a2
[∫ 1

−1

��i

�x

��j

�x
+ ��i

�y

��j

�y
dx dy

]
,

Ke
1w,�x

= 5E

12(1 + �)
a2
[∫ 1

−1

��i

�x
�j dx dy

]
,

Ke
1w,�y

= 5E

12(1 + �)
a2
[∫ 1

−1

��i

�y
�j dx dy

]
,

Ke
1�x,�x

= 5E

12(1 + �)
a2
[∫ 1

−1
�i�j dx dy

]
,

and

Ke
1�x,�y

= 0, Ke
1�x,�y

= 5E

12(1 + �)
a2
[∫ 1

−1
�i�j dx dy

]
.

Also,

Ke
3 =

⎡
⎣Ke

3ww Ke
3w,�x

Ke
3w,�y

Ke
3�x,�x

Ke
3�x,�y

sym Ke
3�y,�y

⎤
⎦

with

Ke
3w,w = Ke

3w,�x
= Ke

3w,�y
= 0,

Ke
3�x,�x

= E

12(1−�2)
a2

[∫ 1

−1

��i

�x

��j

�x
+ (1−�)

2

��i

�y

��j

�y
dx dy

]
,

Ke
3�x,�y

= E

12(1−�2)
a2

[∫ 1

−1
�
��i

�x

��j

�y
+ (1−�)

2

��i

�y

��j

�x
dx dy

]
,

and

Ke
3�x,�y

= E

12(1−�2)
a2

[∫ 1

−1

(1−�)
2

��i

�x

��j

�x
+��i

�y

��j

�y
dx dy

]
.
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