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Abstract

In this paper, the orientation angles of stiffeners arranged in the form of isogrid configuration over a flat plate are selected to optimize the static
and dynamic characteristics of these plates/stiffeners assemblies. The static characteristics are optimized by maximizing the critical buckling
loads of the isogrid plate, while the dynamic characteristics are optimized by maximizing multiple natural frequencies of the stiffened plate.

A finite element model is developed to describe the statics and dynamics of Mindlin plates which are stiffened with arbitrarily oriented
stiffeners. The model is used as a basis for optimizing separately or simultaneously the critical buckling loads and natural frequencies of the
plates per unit volume of the plates/stiffeners assemblies.

Numerical examples are presented to demonstrate the utility of the developed model and optimization procedures. The presented approach
can be invaluable in the design of plates with isogrid stiffeners for various vibration and noise control applications.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Stiffened plate or shell structures are widely applied in the
automobile, aerospace, and ship industries, not to mention in
civil constructions. These structures usually consist of a base
structure forming the “skin” and local reinforcement elements
called “stiffeners” to improve the static and dynamic character-
istics of the base structure.

Isogrid stiffener configuration is a special class of stiffened
or grid structures whereby the grid members are arranged in
an isosceles triangular patterns. Due to their efficiency, these
isogrid members have been widely used in many structural
applications especially in spacecraft components [1,2]. Analysis
of the performance of isogrid structures can be traced back
to the work of Slysh et al. [3]. Since then extensive efforts
have been exerted to study isogrid structures in an attempt
to maximize their stiffnesses, eigenfrequencies, and/or critical
buckling loads while imposing stringent constraints on the total
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structural mass. Examples of these efforts include the work
of Ambur and Rehfield [4] who studied the effect of stiffness
discontinuities and structural parameters on the buckling resis-
tance of isogrid panels subject to different loading conditions.
It was shown that the nonsolid grid stiffened panels are struc-
turally very efficient for wing and fuselage applications. Also,
Huybrechts and Tsai [5] used 3-noded plate finite element
model to analyze the behavior of grid structures by predicting
the stability and failure of the stiffeners in an attempt to quan-
tify the grid structure strength and the effect of missing ribs.
Other researchers have investigated the use of grid structures to
enhance the buckling resistance whether by raising the critical
load [6,7] or by studying the postbuckled behavior of the isogrid
shell [8]. Gan et al. [9] studied the energy absorption in iso-
grid structures under quasi-static conditions. Under three-point
bending loading, Gan et al. showed that isogrid polypropylene
panels have excellent damage tolerance. Less attention was
paid to studying the behavior of grid structures under dynamic
loading conditions. Chen and Gibson [10] used a 3D finite ele-
ment model with brick elements, for both the skin and the ribs,
to predict the modal frequencies and damping factors of isogrid
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Nomenclature

b width of the stiffener
E Young’s modulus
G shear modulus
h, hs thickness of the skin and stiffener
k shear factor
[Kb], [Kp], [KE] stiffness matrices of the stiffener, base

plate, and plate/stiffener assembly, re-
spectively

[KG] geometric stiffness matrix of the
plate/stiffener assembly

[Mb], [Mp] mass matrices of the stiffener and base
plate, respectively

Nx, Ny, Ns normal stresses in the x-, y- and s-
directions, respectively

Nxy in-plane x.y torsional stress
Pcr critical buckling load
u, ub displacement in the x-direction of the

plate and stiffener elements, respec-
tively

v, vb displacement in the y-direction of the
plate and stiffener elements, respec-
tively

V element volume

w, wb displacement in the z-direction of the
plate and stiffener elements, respectively

{�p}, {�b} strain vectors in the base plate and stiff-
ener elements, respectively

�, � mapping coordinates of the base plate
�′, �′ mapping coordinates of the stiffener
�x , �y , �b rotations about the y-, x- and t-axes, re-

spectively
�p density of the base plate material
�b density of the stiffener material
{�p}, {�b} stress vectors acting on the base plate

and stiffener elements, respectively
�x , �y , �s bending moments in the x-, y- and s-

directions, respectively
�xy out-of-plane (x.z) and (y.z) torsional

stress
�x , �y , �s shear stresses in the y.z, x.z, t.z faces,

respectively
{	p}, {	b} degrees of freedom of the base plate and

stiffener elements, respectively

 Poisson’s ratio
� stiffener inclination angle in mapped co-

ordinate system

polypropylene panels with embedded viscoelastic damping lay-
ers. Experimentally, the panels were subjected to an impulse
excitation. The predictions of the model were validated exper-
imentally.

In general, grid structures have been used in numerous ap-
plications. Most of the previous work has been directed to the
study of static and buckling characteristics of grid structures.
Very few articles discuss their performance in dynamic loading
which may lead to a wide implementation in the field of vi-
bration and noise control. Most of the modeling effort was not
well suited to these specific structures which resulted in either
oversimplified models dealing with the skin and the stiffen-
ers as two independent problems or computationally intensive
models with numerous 3D elements. A theoretical model that
is able to accurately describe grid structures, without being too
complicated to solve, is essential to design topologically opti-
mized grid structures.

Different attempts for maximizing a single or multiple
eigenfrequencies of a plate using different topology optimiza-
tion algorithms have been reported in the literature [11–13].
A common criterion in all these attempts is to reach the best
material distribution in plate structures with limited volume.
This is usually achieved by modifying the thickness of each
element of a finite element mesh of the plate structure indepen-
dently to maximize the plate eigenfrequencies while satisfying
a constraint imposed on the total plate volume. Another ap-
proach adopted by Ding and Yamazaki [14] is to implement a
topology optimization method for generating stiffener layout
patterns by introducing a growing and branching tree model.

Cheng and Olhoff [15] searched for optimal stiffener layout that
maximizes the stiffness of rectangular and axisymmetric plates
based on an optimal thickness distribution approach. Bend-
soe and Kikuchi [16] utilized the well-known homogenization
method to analyze composites with perforated microstructures,
which are of continuously varying density and orientation, and
produced gray-scaled structures using topology optimization.
Diaz and Kikuchi [17] considered the problem of optimal rein-
forcement of plates to increase the fundamental frequency by
adding a prescribed amount of reinforcement material. Luo and
Gea [18] introduced an optimal bead orientation problem of 3D
shell/plate structures for both static and dynamic cases. Using
an orthotropic shell design cell model, the optimal bead orien-
tation problem is converted to an optimal orientation problem
of bending equivalent orthotropic materials, and it is solved by
a new energy-based method. Krog and Olhoff [19] studied the
topology optimization problem of statically loaded and freely
vibrating disk and plate structures with different types of rib-
reinforcement. Buhl et al. [20] extended the homogenization
method to the area of geometrically nonlinear structures.

Nevertheless, the problem of optimizing the orientation of
the isogrid stiffeners to maximize simultaneously the critical
buckling loads and natural frequencies of the plates per unit
volume is yet to be tackled. Addressing such a problem is the
main objective of the present study.

In this paper, a thick plate model with arbitrary-oriented iso-
grid stiffeners is considered. The plate is modeled using an
8-node isoparametric element which is formulated using the
first-order shear deformation theory. The stiffeners are in turn
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modeled using a 3-node element based on the Timoshenko
beam theory. Any numbers of stiffeners are allowed to take any
arbitrary orientation within the plate element. Constraining the
design to be of isogrid nature establishes the foundation for fur-
ther analysis and synthesis of structures with periodic isogrid
stiffeners because of their unique band gap characteristics.

2. Finite element model

In this section, an efficient finite element model is developed
to accurately model the stiffness and mass matrices of stiffened
plates with arbitrarily oriented stiffeners which are generally
not distributed in the conventional regular orthogonal arrange-
ments. This capability is essential for the development of a
general topology optimization approach of stiffened plates.

Conventionally, stiffened plate structures are divided into
small number of finite elements to ensure that the stiffeners are
oriented along the boundaries of these elements. This results in
a dramatic increase in the number of elements as the number
of stiffeners with different orientations and/or small spacing in-
creases. Also, the elements themselves become no longer iden-
tical which requires the use of different Jacobean transforma-
tion for all the non-identical elements. In addition, the model
may require a mix of quadrilateral and triangular elements to
satisfy the stiffener-on-the-boundary constraint.

Considering the major drawbacks of the first approach, a
finite element model capable of modeling arbitrary-oriented
stiffened plates is implemented in this study.

2.1. Plate element formulation

2.1.1. Stiffness matrix due to in-plane and bending strains
The stiffness matrix is given by

[Kp] =
∫

V

{�p}T · {�p} dV , (1)

where {�p} = [Dp]{�p} is the combined in-plane and bending
(8 × 1) stress vector for the plate, as illustrated in Fig. 1 and is
defined as

{�p} = {Nx Ny Nxy �x �y �xy �x �y}T (2)

where Nx,y are normal stresses in the x and y directions, Nxy is
the in-plane (x.y) torsional stress, �x,y is the bending moment
in the x and y directions, �xy is the out of plane (x.z) and
(y − z) torsional stress, �x is the shear stress on the y.z faces,
and �y is the shear stress on the x.z faces.

Also, {�p} denotes the combined in-plane and bending (8×1)

strain vector for the plate and is defined as

{�p} =
{

�u

�x

�v

�y

(
�u

�y
+ �v

�x

)
− ��x

�x
− ��y

�y
−

(
��x

�y
+ ��y

�x

)

−
(

�w

�x
− �x

)
−

(
�w

�y
− �y

)}T

. (3)

It can be represented in matrix form as {�p} = [Bp]{�p}, where
u is the displacement of the mid-plane in the x-direction, v is
the displacement of the mid-plane in the y-direction, �x and �y

are the resultant mid-plane rotations about the y- and x-axes,
respectively, w is the out-of-plane displacement of the mid-
plane, and {	p} is the nodal deflection vector of the plate =
{u v w �x �y}T. Note that subscripts x and y indicate differ-
entiation with respect to the x and y coordinates.

2.1.2. Strain–displacement relationship
The strain–displacement relationship for 8-node isoparamet-

ric element with 5 degrees of freedom per node is defined as
follows:

{�p} =
8∑

i=1

Ni(�, �)[I]{�i}, (4)

where N(�, �) are the mapped shape functions, [I] is a 5 × 5
Identity matrix, and {�i} is a nodal degrees of freedom vector.
The arbitrary 8-node element, which is defined in the x.y plane,
is mapped to the �.� plane to become an 8-node quad element,
extending from (� = −1) to (� = 1) in one direction and from
(� = −1) to (� = 1) in the other direction.

Hence, the plate stiffness matrix is defined as

[Kp] =
∫

V

[BT
p ][DT

p ][Bp] dV . (5)

2.1.3. Mass matrix due to in-plane, bending and shear strains
Applying Hamilton’s principle to the potential and kinetic

energies of the skin element, the mass as well as the stiffness
matrices can be calculated [21]

[Mp] =
∫

v

[M] dv, (6)

where

[M] = �p

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

h 0 0 0 0
0 h 0 0 0
0 0 h 0 0

0 0 0
h3

12
0

0 0 0 0
h3

12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

2.2. Stiffener element formulation

The stiffener is modeled as a 3-node beam element with 3
degrees of freedom per node (ub, wb, �b) as shown in Fig. 2.
The beam model is based on Timoshenko’s beam theory, which
is valid for relatively thick beams, as it takes into consideration
the shear strains within the beam structure. The stiffener will be
initially modeled entirely in its local coordinate system (s, t)

and its dynamic matrices will be calculated in this system. Then
it will be mapped to the plate element coordinate system (x, y)

based on stiffener’s location and orientation.

2.2.1. Stiffness matrix due to in-plane and bending strains
The stiffness matrix is given by

[Kb] =
∫

V

({�b}T{�b}) dV , (8)
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Fig. 1. Stress components acting on a plate element.

s, �´

t, �´

Node 2
u2, w2, �2

Node 1
u1, w1, �1

Node 3
u3, w3, �3

Fig. 2. A 3-node beam element for modeling of the stiffeners in the s.t
coordinate system.

where

{�b} = [Db]{�b} (9)

is the combined in-plane and bending (3 × 1) stress vector for
the stiffener and is defined as

{�b} = {Ns �s �s}T, (10)

where Ns is normal stress in the s-direction, �s is the bending
moment in the s-direction, and �s is the shear stress on the t.z
faces. Also, {�b} is the combined in-plane and bending strain
vector of size (3 × 1) for the stiffener and is defined as

{�b} =
{ �ub

�s
−��b

�s
−

(
�wb

�s
− �b

)}T
. (11)

It may be represented in matrix form as

{�b} = [Bb]{�b} =

⎡
⎢⎢⎢⎢⎢⎣

�

�s
0 0

0 0 − �

�s

0 − �

�s
−1

⎤
⎥⎥⎥⎥⎥⎦

{
ub
wb
�b

}
, (12)

where u is the displacement of the mid-plane in the x-direction,
�s is the mid-plane rotations about the t-axis, w is the out-
of-plane displacement of the mid-plane, and {�b} is the nodal
deflection vector of the plate. Also, subscript ‘S’ indicates

differentiation with respect to the s-axis and [Db] defines the
constitutive stress–strain relationship for both the in-plane and
bending states and is defined for symmetric stiffener arrange-
ment as

[Db] =

⎡
⎢⎢⎣

Ehs 0 0

0
Eh3

s

12
0

0 0 Ghsk

⎤
⎥⎥⎦ , (13)

where hs is the stiffener thickness.

2.2.2. Strain–displacement relationship
The strain–displacement relationship for 3-node beam ele-

ment with 3 degrees of freedom per node is defined as follows:

{	p} =
{

ub
wb
�b

}
=

3∑
i=1

Ni(�)I	i , (14)

where N(�) are the mapped shape functions, I is a 3×3 Identity
matrix, and 	i is nodal deflection vector.

The arbitrary 3-node element, which is defined in the s.t
plane along the s-axis is mapped to the �′.�′ plane along the
�′-axis to become a 3-node element, extending from (�′ = −1)

to (�′ = 1).

2.2.3. Mass matrix due to in-plane, bending and shear strains
The mass matrix can be calculated from

[Mb] =
∫

v

[M] dv, (15)

where

[M] = �bb

⎡
⎢⎢⎣

hs 0 0
0 hs 0

0 0
h3

s

12

⎤
⎥⎥⎦ . (16)

2.3. Mapping the stiffener dynamic matrices to the plate
coordinate system

The mapping of the stiffener dynamic matrices to the plate
coordinate system is achieved in two stages; the first is to map
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Fig. 3. An 8-node beam element with arbitrary located stiffener.

Stiffener 

x

y

Fig. 4. Inclined stiffener within plate elements.

the matrices to directions parallel to the (�, �) coordinate system
by using the following transformation:

ub = u cos(�) + v sin(�), �b = �x cos(�) + �y sin(�). (17)

This results in the following transformation matrix:

{
uv

wb
�b

}
=

[
cos(�) sin(�) 0 0 0

0 0 1 0 0
0 0 0 cos(�) sin(�)

] ⎧⎪⎪⎨
⎪⎪⎩

u
v
w
�x

�y

⎫⎪⎪⎬
⎪⎪⎭ . (18)

The second transformation is to map the newly developed
stiffness and mass matrices (which now represent the stiffener
degrees of freedom defined in the �.� coordinate system) to
the 8 nodal points of the plate element as shown in Fig. 3.
This is achieved by multiplying the stiffener matrices with a
transformation matrix that contains the shape functions of the
plate element.

Finally, the combined stiffness and geometric stiffness ma-
trices are calculated by adding those of the skin and of the
stiffener(s).

Using this approach, stiffeners located arbitrary along a plate
structure as in Fig. 4 can be easily modeled without the need to
change the ground mesh of the plate model. The only require-
ment is to calculate the points, where the stiffener intersects the
plate element boundaries, and with a simple iteration technique
the �.� coordinates of these points are calculated.

3. Validation of the finite element model

The predictions of the developed finite element model are
validated experimentally and against the predictions of a com-
mercial finite element package (ANSYS).

The isogrid plate configuration selected for the validation
purposes is shown in Fig. 5. The material of the plate is
ABS which is a thermoplastic widely used throughout indus-
try, whose properties are listed in Table 1. The experimental
plate is manufactured using stereolithography technique. The
dimensions of the plate are given in Table 2.

The experimental plate is fixed in a cantilever configuration,
with one edge entirely clamped, leaving the other three edges
free to oscillate. The excitation was carried out using a speaker
mounted off-center to ensure excitation of all possible modes.

Measurements were done using a scanning laser vibrometer-
type Polytec� Model (PSV200) to measure the velocity field of
the oscillating plates at the modal frequencies. First, a frequency
sweep excitation was conducted and the laser measurements
were taken at a corner node to determine the natural frequencies.
Then surface scans were carried out at the measured natural
frequencies. The obtained experimental results were compared
with the predictions of ANSYS� and the developed model.

Note that the validation of the developed linear finite element
model is carried out using a thermo-plastic plate in order to
facilitate and reduce the cost of the manufacturing process. The
linear model will adequately predict the behavior of the test
plate at a constant room temperature which is well below the
glass transition temperature of the ABS material. Furthermore,

Fig. 5. Configuration of test plate with isogrid stiffeners.
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Table 1
Material properties for ABS

Tensile strength 22 MPa Tensile modulus 1.627 MPa
Tensile elongation 6% Specific gravity 1.05

Table 2
Dimensions of plates in mm (in)

Parameter Isogrid stiffeners

Width 190 (7.5)
Length 198 (7.5)

Skin thickness 1.6 ( 1
16 )

Stiffener thickness 1.6 ( 1
16 )

Stiffener width 1.6 ( 1
16 )

Fig. 6. First four mode shapes for plate with isogrid stiffeners as predicted
by (a) the developed model, (b) ANSYS�, and (c) experimentally measured.

the excitation of the plate dynamics is maintained low in order
to avoid large amplitudes of oscillations that may render the
dynamics to be nonlinear.

Fig. 6 shows the first four mode shapes for the isogrid plates.
In the figure, the left column (a) is for the modes predicted by

the proposed model, the middle column (b) is for those pre-
dicted by ANSYS�, while the right column (c) is for those
experimentally measured modes. Very good matching can be
observed for the theoretical predictions and experimental re-
sults. Also, the matching between the predictions of the pro-
posed model, which uses the new plate elements, and those of
ANSYS�, which uses the conventional plate elements, is very
good, taking into consideration that the proposed model uses
only 110 elements for the isogrid plate for instance compared
with 7432 elements used by ANSYS�.

4. Optimization of the static and dynamic characteristics

4.1. Critical buckling loads

To calculate the critical stability condition or in other words
the critical value Pcr of the in-plane loads at which buckling
starts to occur, the following eigenvalue problem should be
solved:

[KE] − Pcr[KG] = 0, (19)

where [KE] and [KG] are the overall and the geometric stiffness
matrices for the plate/stiffener system.

4.2. Optimization of buckling loads

The objective here is to find the inclination angle � for the
symmetric stiffener arrangements that maximizes the critical
buckling load per unit volume of the stiffened plate structure
which is defined as the “specific critical buckling load”.

Hence, the optimization formulation takes the following
form:

(20)

Fig. 7. Samples of the stiffeners orientation within the plate.
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Fig. 8. Definition of the stiffener inclination angle.

Fig. 9. Normalized first critical buckling load (a) and normalized plate volume (b).

Fig. 10. Optimum inclination angle for the normalized first specific critical
buckling load.

The optimization problem is solved while taking the following
into consideration:

1. The plate structure is of cellular form as illustrated in Fig. 7.
2. Four stiffeners are attached to each cell of the plate struc-

ture.

Fig. 11. Normalized first six critical buckling loads.

3. The design variable is the inclination angle � of the stiff-
eners. Fig. 8 illustrates four arrangements of the stiffeners
as obtained for four different values of the angle �.

4. The plate under investigation is square and clamped from
all edges with skin thickness and stiffener thickness and
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width of 1
16 in. The plate width is 7.5 in and is made of

a thermoplastic material (ABS) with E = 1.627 MPa and
� = 1050 kg/m3.

5. All data are presented in a normalized form, which is cal-
culated by dividing the different function values (buckling
load or plate volume) by their maximum value.

The normalized first critical buckling load and the normalized
plate volume as a function of the stiffener inclination angle are
calculated and plotted in Figs. 9(a) and (b), respectively.

By calculating the first critical buckling load per unit volume
and plotting it for different values of stiffener inclination angles
as shown in Fig. 10, an optimum value for inclination angle
of 42◦ was found to maximize the first critical buckling load
while taking the plate volume, and consequently, its weight into
consideration.

Extending the analysis to maximize the first six critical buck-
ling loads results in a different optimum stiffener inclination
angle of 35◦ as shown in Figs. 11 and 12

Note that the discontinuities in the plots of the first six criti-
cal buckling loads (Fig. 11) are a result of ranking the loads in

Fig. 12. Optimum inclination angle for the normalized first six critical buckling
loads.

Fig. 13. Stiffeners configurations that maximize the first specific critical buckling load (a) and the first six specific critical buckling loads (b).

an ascending order without considering their associated mode
shapes. Such a ranking procedure is essential to compute the
“specific critical buckling loads” which is given by

N∑
i=1

Pcri

V
.

Figs. 13(a) and (b) illustrate the shapes of the stiffened plate
that maximize the fundamental specific frequency and the first
six specific critical buckling loads, respectively.

4.3. Natural frequencies

To calculate the natural frequencies of the entire plate/stiff-
eners structure, the following eigenvalue problem should be
solved:

[K] − �i[M] = 0, (21)

where [K] and [M] are the overall stiffness and mass matrices
for the entire structure, respectively, and �i = 2

i is the ith
eigenvalue.

4.4. Optimization of the natural frequencies

The objective here is to find the inclination angle � for the
symmetric stiffener arrangements that maximizes the natural
frequency per unit volume of the stiffened plate structure, which
is defined as the “specific natural frequency”.

Hence, the optimization formulation takes the following
form:

(22)
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Fig. 14. Normalized first natural frequency (a) and normalized plate volume (b).

Fig. 15. Optimum inclination angle for the normalized first specific natural
frequency.

Fig. 16. Normalized first six natural frequencies.

Fig. 17. Optimum inclination angle for the normalized first six natural fre-
quencies.

The normalized first natural frequency (N = 1) and the nor-
malized plate volume as a function of the stiffener inclina-
tion angle are calculated and plotted in Figs. 14(a) and (b),
respectively.

By calculating the fundamental natural frequency per unit
volume and plotting it for different values of stiffener inclina-
tion angles as shown in Fig. 15, an optimum value for inclina-
tion angle of 70.5◦ was found to maximize the fundamental fre-
quency, taking the plate volume and, consequently, its weight
into consideration.

Extending the analysis to account for the first six natural
frequencies (N = 6) results in an optimal stiffener inclination
angle of 66.5◦ as shown in Figs. 16 and 17.

Note that the discontinuities in the plots of the first six nat-
ural frequencies (Fig. 16) are a result of ranking the frequen-
cies in an ascending order without considering their associated
mode shapes. Such a ranking procedure is essential to compute
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Fig. 18. Stiffeners configurations that maximize the first specific natural frequency (a) and the first six specific natural frequencies (b).
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Fig. 19. Multi-objective optimization for first buckling load and natural frequency (a) and for first six buckling loads and natural frequencies (b).
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the “specific natural frequencies” which is given by

N∑
i=1

�i (�)

V
.

Figs. 18(a) and (b) illustrate the resulting shape of the
stiffened plate that maximizes the fundamental specific
frequency and the first six specific natural frequencies,
respectively.

4.5. Multi-objective optimization of buckling loads and
natural frequencies

The optimization problem is formulated as follows:

(23)

Figs. 19(a) and (b) show the optimal orientation angles for N=1
and 6, respectively.

5. Conclusions

This paper has presented a rational design approach to opti-
mize the static and dynamic characteristics of plates stiffened
with isogrid stiffeners. The optimal orientation angles of the
stiffeners are selected in order to optimize, separately or simul-
taneously, the static characteristics as measured by the critical
buckling loads and dynamic behavior as quantified by the nat-
ural frequencies. For the configurations considered, it has been
shown that maximizing the first critical buckling load/unit vol-
ume requires the orientation angles of the stiffeners to be 42◦.
These angles become 35◦ when maximizing the first six crit-
ical buckling loads/unit volume. For maximizing the first nat-
ural frequency/unit volume, the optimal orientation angles are
found to be equal to 70.5◦ and 66.5◦ when one maximizes the
first six specific natural frequencies. Simultaneous optimization
of the buckling and the natural frequencies results in orienta-
tion angles of 50◦ and 43◦ for the first modes and for the first
six modes, respectively.

The presented finite element model and optimization proce-
dures will be extended to the study of the band gap character-
istics of such a class of plates with periodic isogrid stiffeners.
Such a study will be invaluable in controlling the propagation
of waves over this class of 2D structures both in the spectral
and spatial domains.
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